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In this paper, we discuss our experiences with an after-school program in 
which we engaged middle-school students with low socioeconomic status 
from an urban community in mathematical problem solving. We document 
that these students participated in many aspects of problem solving, 
including the posing of problems, constructing justifications, developing 
and implementing problem-solving heuristics and strategies, and 
understanding and evaluating the solutions of others. We then delineate 
what aspects of our environment encouraged the students to take part in 
these activities, particularly emphasising the proactive role of the teacher, 
the tasks the students completed, and the social norms of our after-school 
sessions. Finally, we discuss the relationship between our study and the 
literature on equity research in mathematics education. 

The United States, like nearly all developed countries in the world, 
struggles with the issue of how to achieve equity in the mathematics 
classroom. Numerous studies indicate that students with low socioeconomic 
status (from hereon, low-SES) perform below the national average on 
standardised mathematics assessments and are more likely to drop out of 
school early (e.g., Reyes & Stanic, 1988; Madison & Hart, 1990; Miller, 1995; 
National Commission on Mathematics and Science Teaching for the 21st 
Century, 2000; National Science Foundation, 2000). As Moses (2001) notes, 
coursework in mathematics has traditionally been a gateway to 
technological literacy and access to higher education. Students who fail to 
master mathematics courses such as algebra are denied access to college and, 
sometimes, even a high school diploma. The struggles of low SES students in 
their mathematics courses represent both a social and pedagogical problem 
for all nations, including Australia. 
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New Paradigms for Equity Research 

In recent years, there has been a shift in the nature of equity research in 
mathematics education. Traditionally, this research had been strongly 
influenced by paradigms from cognitive psychology and had taken a deficit 
approach to understanding the poor mathematical achievement of socially 
and economically disadvantaged students (Gutierrez, 2002, 2008; Nasir & 
Cobb, 2002). In other words, researchers have sought to explain 
mathematical achievement gaps between different groups of students by 
delineating what knowledge, understanding, and cognitive skills students 
from various economic, racial, and gender groups tended to lack. Although 
research using a deficit paradigm has yielded useful findings (e.g., Griffin, 
Case, & Siegler, 1994), several researchers argue that it also has inherent 
limitations (e.g., Gutierrez, 2002, 2008; Nasir & Cobb; Schoenfeld). For 
instance, if one believes that a specific group of students fails to learn 
mathematics because they lack certain cognitive or linguistic skills, this may 
abdicate the teacher of some responsibility for these students‘ learning. That 
is, some may feel that if a particular group of students do not possess the 
knowledge to participate in an in-class activity, the teacher cannot be 
expected to teach these students and it is the responsibility of the school to 
provide the students in question with instruction outside of the mathematics 
class to rectify these deficiencies (Schoenfeld).  

Based on the pioneering work of Delpit (1988) and Secada (1989), equity 
research has moved away from the use of deficit models and instead has 
focused on increasing the opportunities for different groups of students to 
participate in classroom mathematical activities (e.g., Boaler, 2002; Cobb & 
Hodge, 2002; Lubienski, 2002; Nasir & Cobb, 2002; Powell, 1986; Schoenfeld, 
2002;Wang & Goldschmidt, 1989). Within this paradigm, students with low 
SES are not seen as failing to learn mathematics because they lack the 
cognitive capacity or mathematical background to do so. Instead, students 
from traditionally marginalised groups are not provided with the 
opportunity to participate in the same types of mathematical activities of 
other students. Consequently, improving the mathematics education of 
these students does not consist of compensating for the perceived 
shortcomings of these students, but rather involves increasing their 
opportunities to learn mathematics by expanding their participation in 
mathematical activity (Diversity in Mathematics Education Center for 
Learning and Teaching ( DiME), 2007). 

Students’ Mathematical Autonomy 

In this paper, we discuss our experiences working with middle-school 
students from a poor community in an innovative after-school mathematics 
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program. One significant goal of this program was to provide students with 
opportunities to exercise their mathematical autonomy, where a mathematically 
autonomous student is one who is aware of and relies upon his or her own 
mathematical resources when making mathematical decisions or judgments 

(Kamii, 1985).
6
 The main purpose of our first six meetings with the students 

was to negotiate social norms that would be conducive toward achieving 
these goals (cf., Yackel & Cobb, 1996; Yackel & Rasmussen, 2002). In 
particular, we invited students to take responsibility for aspects of 
mathematical problem solving that were typically reserved for the teacher, 
including deciding if a solution to a problem was correct, judging whether 
an explanation made sense, and posing directions for future investigation.  

Theoretical Perspective and Research Questions 

We believe that students‘ participation in mathematical activities is 
dependent upon three interrelated factors: (a) the nature of the tasks that 
students are asked to complete, (b) students‘ expectations and beliefs about 
their roles as mathematical learners, and (c) the social norms of the students‘ 
environment. We elaborate on each of these factors below. 

Before doing so, we note that another overarching factor influencing 
students‘ participation is the societal forces that help to shape students‘ 
views of themselves as mathematics learners (DiME, 2007). Societal and 
cultural issues, including similarities and differences in the practices and 
language used in students‘ mathematics classrooms and out-of-school 
activity (Cobb & Hodge, 2002; Hand, 2003), the perceived relevance of 
mathematics to students‘ lives (Nasir, 2002), and the labels and discourses 
used to describe the engagement with mathematics for students of colour 
(Martin, 2003), can impact students‘ mathematical identity and the extent to 
which they will capitalise on the opportunities to participate in 
mathematical activity (DiME, 2007). These larger societal and cultural issues 
did not play a central role in our classroom design or data analysis, but we 
will return to these issues in the discussion section when we discuss the 
implications of our work with equity research. 

Mathematical Tasks  

The way a mathematical task is structured may invite students to 
participate in some aspects of problem solving while preventing them from 

                                                 
6 We concur with Yackel and Cobb (1996) that mathematical autonomy is not a context-free 
characteristic of an individual student. Whether a student is mathematically autonomous or 
not depends upon the way that student interacts with his or her classroom environment, where 
the established norms of the environment are particularly important. 
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participating in other aspects. In traditional classrooms, students are usually 
given exercises that can be completed by applying a procedure that they 
have just been shown how to use (e.g., Schoenfeld, 1985). For these tasks, 
students are participating only in a limited aspect of problem solving – 
implementing an algorithm – and do not have the opportunity to engage in 
other aspects of problem solving, such as representing the problem, creating 
and applying heuristics, and determining whether an answer is correct. On 
the other hand, thoughtful tasks can elicit desirable forms of student 
engagement. Complex, open-ended problems can encourage students to 
create novel representations and develop and implement powerful problem-

solving strategies
7 (Maher, 2002; Francisco & Maher, 2005).  Mathematical 

tasks that seem to have two plausible but conflicting solutions or tasks that 
encourage generalisation naturally promote justification and sense-making 
(e.g. Ellis, 2007; Rasmussen & Marongelle, 2006; Zaslavsky, 2005). Finally, it 
is important to note that the opportunities that students have to engage with 
a particular task depend upon the conditions of the classroom, potentially 
going beyond how the task is written. When certain desirable classroom 
conditions are in place, such as allowing students sufficient time to explore a 
task and giving students opportunities to revisit tasks and reflect on their 
prior work, students are more likely to create novel representations and 
construct justifications (Maher, 2002; Maher & Martino, 1996). It is important 
to note that low-SES classrooms tend to be highly structured and thus may 
deny students the opportunity to participate in the aspects of problem 
solving described above (cf., Powell, 2004). 

Student Expectations and Beliefs about their Roles as 
Mathematical Learners 

Students and teachers enter mathematical courses with implicit 
understandings of what their responsibilities are and how they are expected 
to behave; these implicit understandings are sometimes said to be part of a 
didactical contract (cf. Brousseau, 1997). If students are given a task that 
violates that contract, they may not engage with the task in the way that the 
teacher intends or they may refuse to participate in the task altogether (e.g., 
Herbst, 2003; Herbst & Brach, 2006). To illustrate, Schoenfeld (1985) observes 
that many students believe that they are incapable of generating new 
mathematics and should not be expected to do so. As a result, they will not 

                                                 
7 

Of course, what constitutes a complex problem that encourages the creation of 
novel representations is dependent upon students‘ mathematical knowledge, 
illustrating that the nature of students‘ mathematical knowledge can also influence 

their participation. 
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create new representations or heuristics in their problem solving, even when 
the problem they are solving invites them to do so. Citing her own 
classroom experiences, Lubienski (2000, 2002) warns that students with 
different SES may enter mathematics classrooms with different expectations, 
implying that the same task might evoke different patterns of participation 
in different groups of students. 

Classroom norms. Research suggests that there is a strong relationship 
between students‘ mathematical beliefs and the social aspects of their 
mathematical environment (Cobb & Yackel, 1996; Yackel & Cobb, 1996; 
Yackel & Rasmussen, 2002). To characterise this relationship, Yackel and her 
colleagues refer to social norms as regularities in the social interaction 
patterns of a classroom. Cobb and Yackel (1996) argue that the norms of a 
classroom environment and individual students‘ mathematical beliefs are 
deeply intertwined. In particular, individuals‘ beliefs can be thought of as 
their understanding of the normative expectancies of their mathematical 
environment. Likewise, social norms can be thought of as taken-as-shared 
beliefs that make possible smooth communication in classroom interactions 
(Cobb, Yackel, & Wood, 1993; Yackel & Rasmussen, 2002). 

Following Yackel and Cobb (1996), we argue that the norms of a 
mathematics classroom may either invite or inhibit students‘ expression of 
their mathematical autonomy. Students are more likely to exercise their 
mathematical autonomy in situations where they perceive it appropriate to 
make contributions using their own mathematical resources. Mathematics 
classrooms with productive norms and in which students regularly take 
responsibility for deciding what mathematics should be investigated and 
whether a mathematical idea or argument makes sense will lead to more 
opportunities for students to express their mathematical autonomy.   

Research Questions 

This paper has two goals. Our first goal is to document the success of 
our after-school program at creating mathematically autonomous students 
who expanded the ways in which they participated in mathematical 
problem solving. We will illustrate how the students regularly posed 
challenge problems for each other to solve, justified their solutions to 
problems, attended carefully to each other‘s justifications, and challenged 
and amended these justifications. Our second goal is to examine what 
aspects of our after-school environment made this increased participation 
possible. In particular, we will address the following three related questions: 

 How did the tasks chosen by the researchers provide students with 
the opportunity to expand their participation in mathematical problem 
solving? 
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 How did the social norms of the after-school environment encourage 
students to take more responsibility in their problem-solving activity?  

 What were the researchers‘ roles in negotiating these productive 
norms? 

Research Context and Methods 

Research Setting 

The research reported in this paper occurred in the context of the 

―Informal Mathematical Learning‖ research project.
8
 In this project, an 

innovative after-school program was implemented at Hubbard Middle 
School in Plainfield, New Jersey. Plainfield is an economically depressed 
area; 74% of the students at Hubbard Middle School participate in a free or 
reduced-price lunch program. The students at Hubbard Middle School are 
predominantly students of colour; 98% of the students are African American 
or Latino. At the beginning of the 2003-2004 academic year, our research 
team made a brief presentation at a parent-teacher conference in which we 
invited 6th-grade students to participate in the Informal Mathematical 
Learning program. Twenty-four 6th-grade students, all African American or 
Latino, volunteered to participate. These students were representative of the 
student population at Hubbard in terms of grades, scores on standardised 
tests, and SES. In fact, the participants in this study had slightly lower 
grades and standardised test scores than their classmates who did not 
participate. 

In the after-school sessions, students were asked to work on open-
ended, well-defined mathematical problems. In general, these problems 
were of a type that the students had not seen before. The complete list of 
problems in which the students engaged are presented in the Appendix. The 
researchers encouraged collaboration among students, frequently asking 
them to work together on tasks. Justification was also encouraged and 
students were frequently asked to explain their solutions to their peers. At 
the same time, the students were never told whether their reasoning or 
solutions to problems were correct. The students themselves were expected 
to be the arbiters of which explanations made sense and were acceptable. All 
sessions were videotaped. The goals of this research study were to 
understand how students‘ mathematical reasoning developed in this 

                                                 
8
 The ―Informal Mathematical Learning‖ Project, led by Carolyn Maher, Arthur 

Powell, and Keith Weber, is supported by the National Science Foundation ROLE 
Grant REC0309062.  
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problem-solving environment over time and to investigate the relationship 
between mathematical autonomy and mathematical reasoning.  

When organising these sessions, we did not directly consider the SES of 
the participating students. In fact, much of our environment was consistent 
with how we organised informal learning environments with other groups 
of students (cf., Maher, 2002). We did not want to begin our engagement 
with students with preconceived notions about their abilities or dispositions. 
To avoid such stereotypes, we treated students as individuals with unique 
life histories and experiences (cf., Gutierrez, 2002). However, we were aware 
that students entered our program with life histories that impinged 
(positively and negatively) on how they interacted with us, with each other, 
and with the mathematical tasks that we presented to them and they 
presented to each other. Like classroom teachers, we did not have access to 
these life histories. As such, we carefully attended to the meaning that 
students attached to their words and actions and the way students seemed 
to interpret our words and actions. We used insights gained from this 
attention in formulating tasks for students to work on and negotiating what 
constitutes acceptable researcher-student and student-student interaction 
patterns. Later in the paper, we will discuss how our study relates to the 
mathematics education research literature on equity. 

Data Collection 

The study was a longitudinal one, spanning 3 years. This paper will 
present the initial stages of analysis, focusing on the first 3 weeks of the 
study. The decision to focus on these beginning sessions was based on the 
fact that we wanted to see how productive classroom norms were 
established and investigate the extent to which students participated in an 
increasingly wide range of problem-solving activity. Analysing later 
sessions, in which some classroom norms were already established and 
student expectations were already in place, would not be appropriate for 
achieving these goals. The participants met with the researchers twice a 
week, with each meeting lasting approximately 75 minutes. There were six 
meetings during the 3-week period, totalling approximately 8 hours. During 
the sessions, three cameras videotaped these classes. One camera focused on 
the teacher-researcher while the students were completing their 
investigations and the students at the overhead projector when the students 
were sharing their work with the class. Each of the other two cameras 
focused on an individual table of three or four students. These students 
served as focus groups for our analysis. During these meetings, students 
were primarily engaged in problems about fractions using Cuisenaire rods. 
A question representative of those that students were asked to solve is ―If I 
gave the light green rod the number name one, what number name would I 
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give to the yellow rod?‖ Each of these lessons was videotaped, yielding a 
total of approximately 24 hours of video to be analysed. 

Data Analysis 

Initially, three authors of this paper independently viewed the 
videotapes and documented every episode in which we felt a student was 
behaving in a mathematically autonomous manner (i.e., relying on his or her 
own mathematical resources, rather than cues from a classmate or authority 
figure, in making a mathematical judgment). There was a high level of 
agreement on the identified instances, and any disagreement was discussed 
and used for further refinement of the authors‘ understanding of the notion 
of mathematical autonomy. For each episode, the authors then identified the 
aspects of the environment, with special attention to the task the students 
were completing and the norms of the environment, that encouraged 
students to exercise their mathematical autonomy. Finally, when we 
observed productive social norms that invited student participation, we 
focused our attention on episodes in which these norms were negotiated 
between the students and the researcher.  

Results—Selected Episodes 

In this section, we present a qualitative account of how productive 
norms were established in our classroom environment, how these norms 
invited students to participate in many aspects of problem solving, and how 
this participation enabled students to reason in sophisticated ways. In the 
next section, we will present quantitative evidence that the episodes that we 
are presenting here are indicative of what transpired in the sessions that we 
analysed. 

Episode 1 

The first episode occurred early in the first class meeting. The 24 
students in the class were partitioned into seven tables; each table contained 
a group of three or four students. There was a bag of Cuisenaire rods placed 
in the middle of each table. Students were asked to examine the Cuisenaire 
rods and make observations of them. When a student made an observation, 
he or she was asked to come up to the overheard and share it with the class. 
The following excerpt occurred in this context: 

Researcher 1: Shanae, do you have a comment? 
Shanae:   Two yellows make a whole [by ―a whole‖, Shanae is referring 

 to an orange rod, the longest of all the Cuisenaire rods]. 
R1:   Did everyone hear what Shane said? Can you come up here 

 and show us what you just told us? 
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R2:   Not everyone heard you Shanae. Come up to the overhead 
 and show us, we have more rods here. 

R1:   Yeah, you need to speak louder. 
Shanae:   Two yellows make one whole. 
R2:   Do you want to come up and show us? There‘s room over 

 there to show us. 
  [On the overhead, Shanae lines up two yellows rods and 

 shows that these have the same length as one orange rod] 
R1:   Isn‘t that interesting? Did you see what Shanae just did? Okay, 

 I want you all to think about what Shanae just did, and she 
 said that two yellows make one whole. I have a question […] I 
 am going to ask it to Shanae, but I am going to ask it to all of 
 you. If I gave the yellow rod the number name five, what 
 number name would I give to the orange rod, raise your hand 
 if you think you know. If you know discuss it at your table 
 and see if you agree. 

Dante:   I think it would be ten because… 
Chanel:   Half of the orange is yellow. 
R1:   Okay, discuss it at your table, if everyone at the table agrees, 

 raise your hand. If you haven‘t discussed it at your table, I 
 really want you to discuss it at your table. 

This excerpt is important since the episode began to establish 
regularities in the classroom that would be prevalent throughout the 
analysed episodes. At the most basic level, when students had a finding, 
they were asked to share their finding with the class and explain or justify 
their finding, often while using the overhead projector to display their work. 
The teachers also expected the students to carefully attend to one another‘s 
work. There were more sophisticated interaction patterns being introduced 
here. First, Shanae‘s observations served as the basis for the next task posed 
by the researcher. This was the first instance of a student‘s contribution 
steering the subsequent investigations of the class, a theme that would 
become increasingly common as the sessions progressed. Second, after the 
first researcher posed the question, one student correctly claimed that the 
answer was 10 with a second student offering a justification for this solution. 
However, the researcher did not acknowledge these students‘ comments; 
instead she insisted that the students first discuss the work at the table and 
only raise their hand when a consensus at the table was reached. We will 
illustrate in later excerpts how, when this interaction pattern became 
normative, students tried to understand one another‘s explanation, took an 
interest in their classmates‘ reasoning, and shared responsibility for deciding 
which solutions made sense. 
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Episode 2 

Like the previous episode, this episode also takes place in the first 
session and is presented here since it illustrates the development of 
important norms that were present throughout the class sessions.  

R1:  I‘m going to call the orange rod one, I want to know what number 
name we would give to the yellow rod,  discuss it at your tables. 

Chris:  [at his table] 0.5. 0.5 times two is one, right?  
Jeffrey:  [to Chris] You can‘t really do a division with one divided by two 

so you do .5 times two. 
R1:  Raise your hand if you‘re ready to discuss it […] I‘m asking you 

what the number name is for yellow and I‘d like to hear from 
Chris. 

Chris:  Um, the number 0.5. 
R1:  You‘re going to call it 0.5, how many people said 0.5? Only a 

couple of people. Why Chris? 
Chris:  Because if you add 0.5, since it‘s a decimal, if you add five plus 

five regular it would equal ten but it‘s a decimal so if you add it 
with a decimal, it would equal to a whole number which is one. 

R1:  So if you add 0.5 and 0.5 you get one. How many people think 
that‘s reasonable what Chris just said, did anyone think 
something else? … I want to hear from Malika, okay Malika, I 
want a number for yellow and all I know is the orange rod is one. 
What are you telling me that yellow has what number name? 

Malika:  One. 
R1:  One? Malika says the number name one, what do you all think 

about that? […] Do you think that‘s okay? Dante agrees. Okay 
now, why? Why does it work? How can you show it has the 
number name one? Um, what do you think, Chris? 

Chris:  You can‘t do it because if you put one you‘re not really dealing 
with multiplication so if you do one and one it will equal two, but 
the orange rod is only one.  

R1:  So what you‘re saying is, what I‘m hearing you say, that if the 
length of the yellow rod is one and the length of the other yellow 
rod is one, that the length of the yellow rod along with the yellow 
rod which is the orange rod would have to be two, but Malika 
thinks they both can have the number name one. Kendra? 

Kendra:  I think it might be a half because a half and a half is one whole 
[…] 

R1:  So some of you I think here were thinking that you‘re multiplying 
and some of you are thinking that you‘re adding… What makes 
sense here? Should we allow multiplying and adding? What are 
we paying attention to? What do you think? 

This conversation continued with another student suggesting the 
answer might be 1.5. No consensus among the students was reached before 
a new question was posed to the students. There are several characteristics 



Participation in Problem Solving 101 
 

  

about this excerpt that became regularities in subsequent classroom 
interactions. First, at no point did the researcher tell a student if he or she 
was correct or incorrect. Rather, she tried to deflect responsibility in 
establishing the reasonableness of an answer or explanation back to the 
students by continually asking students what they thought and whether or 
not an explanation made sense. Second, the researcher tried to elicit as many 
different answers as she could from students. As Rasmussen and Marongelle 
(2006) argue, eliciting several alternative solutions naturally helps students 
feel the need to justify, so as to decide which solution is correct. Finally, this 
sequence ended without a consensus being reached, a sharp violation of 
traditional classroom discourse where a student offers a solution and the 
teacher evaluates it (Mehan, 1979). It is worth noting that several classroom 
regularities are already beginning to form. Chris and Jeffrey are observed 
discussing their solution to the problem with each other before offering it to 
the class, while Chris and Kendra both accompany their solutions with a 
justification. 

Episode 3 

In the following episode, students were grappling with the question: ―If 
the blue rod had the number name one, what do you call the white rod?‖ 
Chanel was able to deduce the answer was one ninth, since nine white rods 
were as long as one blue rod, but Dante, her tablemate, was unable to arrive 
at an answer. The exchange below illustrates Chanel helping Dante: 

Chanel:  [addressing Dante at their table]If we take this one [pointing to the 
blue rod], that‘s a whole…and you take one of these [taking a 
white rod and placing it along the blue one], it‘s 1.9 [NOTE: Chanel 
and Dante use 1.9, 1.3, and 1.5 to refer to one ninth, one third, and one 
fifth, respectively] …so if you take some more of these, that‘s 
1.9+1.9+1.9+…+1.9 [9 times]. Take the white ones away…[places 
three light green rods along the blue]. Now, what is this called 
now? [referring to light green]  

Dante:  1.3   
Chanel:   Why? 
Dante:  It‘s 1.3 because 3 light green rods make up the blue … [happily] 

I‘m a genius!  

We argue that the norms established in the first two episodes are 
influencing Chanel‘s behaviour. At this point, it has been established that 
solutions should make sense to students and that students are encouraged to 
share their solutions with the class only after everybody at their table agrees 
with the solution. A psychological correlate of these norms is that students 
are now responsible for the mathematical understanding of their tablemates. 
In the excerpt above, Chanel accepts this responsibility. She first offers an 
explanation for why the white rod should have the number name one ninth. 
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(Chanel and Dante mistakenly say 1.9, 1.3, and 1.5 instead of one ninth, one 

third, and one fifth, respectively, but their reasoning is otherwise correct
9
). 

However, she is not satisfied that Dante heard her explanation. She 
attempted to see if he understood the explanation by seeing if he could 
apply similar reasoning to another example and then provide his own 
justification for why his solution was correct. The cognitive benefits of 
Chanel‘s tutoring are easy to observe: After Chanel‘s intervention, Dante 
appears to understand a mode of reasoning that he had not previously 
demonstrated and Dante appears happy with his newfound understanding. 

Episode 4 

The following excerpt occurs while students are discussing their 
solutions to the problem, ―If the blue rod has the number name 1, what 
number name should we give to the light green rod?‖ There was a debate as 
to whether the light green rod should be assigned the number name one 
third or 0.3. (Note that three light green rods have the same length as one 
blue rod). During this debate, Dante asks what number name the white rod 
would have if the light green rod had the number name 0.3: 

Dante: Since 3 white cubes go into a light green rod, what are we gonna 
call …if we call the light green 0.3, what are we going to call the 
white rod? 

R1:  Let‘s follow this here, what Dante says. […] He said if 3 white 
rods are the same length as light green…Do you all agree with 
that?  

Class:  Yes.  
R1:  So, the question is what are we going to call the white rod. […] I 

want you all at your tables to figure that out. 

We feel this episode is significant because Dante is pushing the 
boundaries of what responsibilities are usually assigned to students in 
mathematics classrooms. In many classrooms, the teacher‘s goal is to 
ascertain what the students know. He or she therefore has the responsibility 
of posing questions to students and evaluating their answers. The students 
have the responsibility of presenting their mathematical knowledge for 
evaluation. In such environments, students are not expected to pose the 
questions and, indeed, may refuse to participate in activities that require 
them to do so (e.g., Herbst & Brach, 2006). In the presented episode, the 
researchers received Dante‘s contribution positively. They first called 

                                                 
9
 We do not know why Chanel and Dante used these idiosyncratic representations 

for fractions and acknowledge this could significantly hinder their understanding of 
decimals in the future. The researcher later attempted to resolve the issue by asking 
students to discuss what the white rod should be called. 
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students‘ attention to what Dante was saying and then asked the students to 
solve Dante‘s task. The researchers implicitly endorse Dante‘s behavior by 
calling students‘ attention to it. In short, this episode illustrates Dante and 
the researchers negotiating a new pattern of interaction – the students 
themselves may take responsibility for posing problems to their classmates. 
Dante‘s previous experiences with Chanel (see episode 3) and the norm that 
students‘ participation would influence subsequent investigations may have 
encouraged Dante to pose this problem to his classmates. In episode 6, we 
will illustrate how one problem posed by a student expanded the ways his 
classmates thought about fractions. 

Episode 5 

In this episode, a group of students were working on the problem, ―If 
five rorange trains  had the number name one, what would the number 
name for red be?‖ (A ―rorange train‖ was the name assigned by the students 
for an orange rod and red rod laid end-to-end.) The students initially 
struggled with this question, with different students conjecturing that the 
number name for red was 1/2, 1/6, 1/15, and 1/30 (the correct answer). 
During this debate, the following discussion took place: 

Jeffrey: Because we call this whole line one [pointing to the five orange 
and five red rods lined up side by side] and it takes 30 red rods to 
cover the whole thing so it has to be one thirtieth. [Malika, 
working independently, can be heard in the background saying, 
―It is one sixth‖] 

R3:  So you‘re saying that because… say that again, I‘m sorry. 
Jeffrey:  Because we‘re calling this whole line one whole and it takes 30 red 

rods to complete it, we should call it one thirtieth. 
R3:  So Jeffery‘s saying one thirtieth and Malika is saying one sixth… 
Malika:  One-sixth. 
R3:  So did you hear Jeffrey‘s explanation? So he said it‘s because… 
 [Jeffrey is grinning widely as he taps the researcher on the arm 

and points to a sign on the wall that says ―Prove it‖] 
R3:  [to Jeffrey] What are you looking at there? [Jeffrey continues to 

grin as he points to the sign] 
R3:  Oh, yeah. Prove it! That‘s a good question. Malika, show to me 

that it‘s one sixth. 

Methodologically, an important way to determine if norms are present 
in a classroom environment is to observe students‘ reactions when they are 
transgressed. When Jeffrey presents his answer of 1/30, he presents a 
justification for why his answer is correct.  It is notable that when Malika 
arrives at a different answer, Jeffrey hints to the researcher that Malika 
should be asked to justify her solution. We would argue that the norm that 
solutions should be accompanied by justifications (especially when students 
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arrive at different solutions) had convinced Jeffrey that it was his and other 
students‘ responsibility to construct arguments to support their assertions 
(cf., Cobb & Yackel, 1996). This excerpt also illustrates Jeffrey negotiating a 
more active role in this classroom environment. Prior to this point, the 
request for justifications usually came from the researchers. One 
interpretation of Jeffrey‘s behavior was that he did not feel it was his place to 
ask for a justification but it was the researcher‘s responsibility to do so. 

Episode 6 

In the final excerpt, students were told that the combined length of an 
orange and red Cuisenaire rods, placed end-to-end, had the number name 
one. Students were then asked to determine what number name the white, 
red, light green, and dark green rods should have. The students chose to call 
the orange and red Cuisenaire rods a ―rorange train‖. Four students, David, 
Nia, Jelani, and Jerel, came to the overhead projector to present their 
solution to this problem. After presenting their correct solution and 
explaining how their solution was constructed, Jerel posed a challenge 
problem to the class: 

Jerel: Alright. If rorange is one, what is the yellow rod? [There is a 
general din of the students mumbling] 

R1:  Say it one more time, nice and loud. 
Jerel:  If rorange is one, what is the yellow rod? 
Student:  [from the back] One half. 
R2:  Did everyone hear this? If you heard it, talk with your group. If 

not, the question is… [Many students are heard discussing the 
problem] 

R1:  OK. Thank you very much. Very nice challenge! 

Prior to this excerpt, it had already been established that students were 
welcomed to contribute by proposing challenges. In this excerpt, the 
researchers once again support Jerel‘s challenge; first by calling everyone‘s 
attention to Jerel, second by making sure everyone heard what was being 
asked, and third by calling Jerel‘s challenge ―very nice.‖ The seemingly 
taken-as-shared expectation that students were permitted to pose challenge 
problems to other students probably invited Jerel to present his problem. 
However, the initial task itself may have also contributed to Jerel‘s problem 
posing. Jerel and his classmates were asked to find the lengths of five 
different coloured rods. We have found that such questions invite 
generalisations, both in terms of finding a general method to solve all cases 
and in considering how one would solve cases that were not posed in the 
original question. 

This episode provides an illustration of how having students participate 
in the activity of posing challenge problems provides them with an 
opportunity to improve their mathematical understanding. By the point in 
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which the above excerpt occurred, most students had developed what Steffe 
(2003) calls a partitive fractional scheme. That is, they could recognise, for 
instance, that the red rod was one fifth of the orange rod because the length 
of five red rods was as long as the orange rod. Jerel‘s challenge problem was 
particularly interesting because it could not be solved by a partitive 
fractional scheme, a scheme that most students had mastered by this point. 
The yellow rod did not divide the ―rorange train‖ evenly (the yellow rod 
had the length of five white rods while the rorange train had the length of 
twelve). To address Jerel‘s challenge, most students developed and used 
what Steffe (2003) refers to as a unit fractional composition scheme. They 
reasoned that since the white rod was 1/12 and the yellow rod contained 
five white rods, the yellow rod should have length 5/12. Most students were 
then able to use this scheme to solve other similar problems. Hence, Jerel‘s 
challenge problem provided students with the opportunity to reason about 
fractions in a more sophisticated way.  

 Patterns of Student Participation 

In this section, we focus on three aspects of problem solving in which 
students do not traditionally participate when placed in traditional 
environments: (a) trying to understand the arguments of others, (b) 
correcting the arguments of others, and (c) posing problems for themselves 
and others to investigate. In analysing our data, we noticed that in the first 
few sessions, students rarely participated in these activities. However, 
students‘ participation increased dramatically in the subsequent sessions. To 
document these trends, we analysed the behaviour of two focus groups of 
students – one focus group was a table with four students and the other 
group was a table with three students. We chose to study these students 
because there were cameras documenting these students‘ behaviours most 
of the time. For each of the first six class sessions, we counted the number of 
times that each of the following occurred: 

(a) Students questioned the arguments of others. Such questions 
occurred in situations in which students inquired to seek verification that 
they understood the argument of their classmate or situations in which the 
students asked questions to seek information about aspects of others‘ 
arguments that were unclear to them. We took this type of questioning as 
evidence that students were attending to and trying to understand the 
arguments of their classmates. 

(b) Students corrected the arguments of others. When one student 
presented an argument and an aspect of that argument was faulty, that 
student‘s tablemates would sometimes point out and correct that aspect of 
the argument. We took this as evidence that students were evaluating the 
validity of and building upon the arguments of their classmates. 
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(c) Students posed challenge problems for their classmates to solve. We 
took these instances as evidence that students were actively shaping the 
direction of the mathematical investigations. 

The results of this analysis are presented in Table 1. As the table 
illustrates, students‘ participation in each of these activities rapidly 
increased. For instance, students did not pose a challenge problem in the 
first two sessions, but posed nine challenge problems over the next four 
sessions. There did seem to be a slight decrease in participation in the sixth 
session. This is likely because the questions the students were addressing 
were somewhat more difficult and they were working collaboratively on a 
larger task that consumed the majority of the session. As a result, students 
spent more time generating solutions to problems and less time presenting 
their solutions to others or posing new problems to be solved. 

These findings weaken the plausibility of the claim that the students in 
our environment participated in the way that they did out of habit or 
convention. If such participation patterns were common in the students‘ 
other mathematical environments, we would have expected more frequent 
participation in the initial sessions. A plausible alternative hypothesis to our 
data is that students‘ participation increased because they become more 
comfortable and accustomed within our environment. However, teachers at 
Hubbard Middle School who assisted us with this project emphasised to us 
that the interaction patterns were not typical of what transpired in the 
mathematics classes at their schools. The mathematics classes at their schools 
were highly structured and presented little opportunity for students to solve 
challenging problems, present justifications, question one another, or pose 
challenge problems. 

Table 1.  
 Number of Instances that Students Participated in Problem-Solving Activities 

Session Student inquiring 
about the 
arguments of a 
classmate 

Student 
correcting the 
argument of a 
classmate 

Student posing a 
challenge 
problem for a 
classmate 

1 1 0 0 

2 8 2 0 

3 17 5 2 

4 19 14 5 

5 27 19 1 

6 13 10 1 
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Discussion 

Summary of Results 

Increased participation and changes in students’ expectations. We 
documented that students participated in many aspects of problem solving, 
including posing problems to be solved, generating heuristics and notation 
to solve the problems, constructing justifications to their solutions, helping 
other students understand these justifications, and attending to, questioning, 
and evaluating the justifications of others. As section 5 illustrates, much of 
this participation was largely absent in the first two sessions of our study, 
but became increasingly prevalent as our study progressed.  

In several of the episodes, we found evidence that students‘ expectations 
of their roles as mathematical learners had shifted as our study progressed. 
For instance, in episode 3, Chanel acted as if it was her responsibility to 
make sure that Dante understood why the white rod should have the 
number name one ninth if the blue rod had the number name one. In 
episode 5, Jeffrey‘s actions imply he has the expectation that students‘ 
answers should be accompanied by justifications and, further, when they are 
not, the researcher should request a justification. Prior to Dante‘s challenge 
in episode 4, students had not posed challenge problems. However, as 
section 5 illustrates, many students felt comfortable doing this in subsequent 
sessions.  

The nature of the tasks. There were several aspects of the tasks that we 
provided that may have encouraged students to take a more active role in 
the problem-solving process. First, the tasks that students were given were 
not similar to problems that they had seen before and students generally 
were not aware of a procedure that they could use to solve the problems. In 
these cases, in order to make progress on the assigned problems, they had 
no choice but to rely on their own mathematical resources. Second, the tasks 
were open-ended, in the sense that they either allowed multiple solutions, or 
multiple ways to arrive at a solution, or both. Such tasks encouraged student 
creativity. Further, when students presented multiple solutions to a 
problem, this created an intellectual need for students to justify their 
solutions in order to determine which solution was correct (e.g., Rasmussen 
& Marongelle, 2006; Zaslavsky, 2005). For instance, in episode 5, we see how 
conflicting answers prompted Jeffrey to desire a justification from Malika.  

Third, many of the tasks invited students to generalise. For instance, in 
the first session, students were asked, ―If the white rod has the number 
name 2, what number name would I give to the other nine rods?‖ Such 
questions encourage students to come up with a general method for 
determining the length of a given rod rather than solving nine separate 
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problems. Generalisations can encourage students to provide justifications 
to show that their solutions are correct (e.g., Ellis, 2007) and to pose 
extension problems, as illustrated in episode 6.  

Classroom norms. A number of classroom norms were established in our 
initial sessions that may have been useful in encouraging students‘ 
participation. First, the researchers received all participation positively but 
never told students whether they were correct. This may have reduced 
students‘ fears about having their mathematics judged by authority figures – 
a concern that Lubienski (2000) raised based on her own classroom-based 
research – and allowed them to participate more freely. This also may have 
encouraged students to take responsibility for determining whether or not a 
solution was correct or a justification made sense. Second, students were 
always asked to justify their answers and the acceptability of their 
justifications was used to decide which answer was correct among multiple 
alternatives. Third, students frequently presented their work on the 
overhead projector. When a student was presenting, the researchers would 
make sure the rest of the class was quiet and attending to that student‘s 
arguments. This may have encouraged students to attend to the arguments 
that others were presenting. Fourth, students were required to convince 
their tablemates of the soundness of their solution before presenting their 
work to the entire class. This likely promoted students to take responsibility 
for the understanding of the other students at their table, as was observed in 
episode 3. Finally, students‘ contributions frequently set the stage for 
subsequent investigations. This may have led students to take a more 
proactive role in determining what mathematics was investigated, including 
posing challenge problems for other students to solve. 

Learning opportunities created by increased participation. We believe that in 
some cases, students‘ increased participation in problem solving provided 
them with opportunities to advance their mathematical understanding. In 
episode 3, Dante initially appeared unable to understand why the white rod 
should have the number name one ninth when the blue rod had the number 
name 1. After Chanel acted as a tutor, Dante understood Chanel‘s solutions 
and could use similar reasoning to answer other questions. In episode 8, 
Jerel‘s challenge problem provided students with the opportunity to develop 
a more sophisticated scheme for reasoning about fractions. We believe these 
episodes each constitute specific instances where increased participation had 
specific cognitive benefits for individual children. In Weber, Maher, Powell, 
and Lee (2008), we discuss the relationship between students‘ interaction 
patterns and learning opportunities in more detail. 
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Caveats and Directions for Future Research 

We believe that there were three aspects of our study that limit the 
extent to which these results could be generalised to actual classrooms. First, 
the experience of participating in an after-school enrichment program was 
novel to students. It is likely that they did not have strong expectations of 
what their experience would be like. This may have facilitated the 
establishment of productive social norms. These students likely had more 
defined expectations for how their interactions in their regular mathematics 
classes should proceed, making the process of negotiating productive norms 
more difficult for the teacher. Second, unlike the researchers in this study, 
teachers in most classrooms are accountable for what the students learn. As 
a result, teachers may find themselves in a difficult position in deciding 
whether to devolve responsibility of some aspects of mathematical activity 
to the students or play a more active role in students‘ investigations. To 
illustrate one difficulty that a teacher might have, consider a student who 
poses a challenge question that is not germane to the topic that the teacher 
intends to teach. Does the teacher spend valuable class time allowing 
students to consider this question? Or does the teacher not follow up on the 
student‘s question, which may discourage students from proposing 
investigations in the future? Analysing how teachers can implement the 
ideas discussed under the constraints of public schooling is beyond the 
scope of this paper, but would be an interesting topic for future research. 
Finally, the students who participated in this study were volunteers, or more 
accurately, were volunteered to participate by their parents. Although these 
students were demographically similar to their classmates who did not 
participate, it is possible that these students had other characteristics not 
shared by their classmates, such as a desire to do mathematics. We do not 
believe that this was the case, but we have no way to test for this hypothesis. 

How this Data relates to our Larger Research Project 

This data came from the first eight sessions of a 3-year research project. 
A comprehensive analysis of the research project is beyond the scope of the 
paper, but some details about how the project proceeded may help the 
reader interpret our findings. First, the norms of this study were stable and 
continued throughout our interactions with the students. An illustration of 
how some of these norms provided the students with opportunities to 
engage in sophisticated mathematics is discussed in Weber et al. (2008). 
Second, after observing our lessons, teachers in the school district in which 
our study was couched were able to successfully create a problem-solving 
environment that was similar to what was reported here with another group 
of students. Third, students who went through these environments showed 
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gains on their standardised tests, suggesting that environments of the type 
that we created may be influential in closing the achievement gap. The latter 
two findings will be the subject of future reports. 

Relevance to Equity Research 

Previous research on students of low SES, especially poor students of 
colour, suggests that, in many cases, their classrooms are highly structured 
with a strong emphasis on procedures. Students in these environments are 
asked to observe and then implement procedures; they are given few 
opportunities to use their own mathematical resources in making decisions. 
Perhaps consequently, many such students develop highly procedural views 
of mathematics and engage in mathematical activity only when they 
perceive it to be necessary (e.g., Martin, 2000; Schoenfeld, 2002; Powell, 2004; 
DiME, 2007). The results of this study contribute to this research in three 
ways. First, the population in our study consisted of middle-school students 
of colour in a poor community. Our study indicates how teachers might 
successfully engage them in powerful mathematical reasoning, including 
forming and evaluating justifications, posing interesting challenge problems 
for investigation, and developing and implementing strategies to solve 
difficult problems. If these students did not engage in similar activities in 
their classrooms, it is not because they lacked the cognitive capacity to do so. 
Second, the students in our study rapidly took responsibility for their own 
mathematical learning and activities, as well as the learning and activities of 
their classmates. This reinforces Yackel and Cobb‘s (1996) argument that the 
mathematical autonomy of students is not a context-free trait of an 
individual student, but rather a characteristic of how that student interacts 
in his or her mathematical environment. Within our environment, the 
students in our study exercised their mathematical autonomy in a relatively 
short period of time. Third, social norms and taken-as-shared expectancies 
were established within the first three meetings of our study. Previous 
research suggests that productive norms can be established quickly in 
mathematical environments and that these norms can have a positive effect 
on students‘ mathematical activity (Yackel & Rasmussen, 2002). Our study 
replicates these results in a different environment. 

The socioeconomic status of our students did not play a major role in 
how we created our classroom environment. We preferred to engage 
students without preconceived notions of what their dispositions were or 
how they would behave. However, in our analysis, we did find five aspects 
of our environment that might be particularly beneficial when working with 
students with low SES. First, the researchers refrained from evaluating the 
correctness or sophistication of the students‘ mathematical reasoning. 
Previous research suggests that students with low SES may be less likely to 
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participate in classroom mathematical activities out of fear of being judged 
negatively by the teacher or the perception of the teachers‘ stance toward 
them (e.g., Delpit, 1988; Frankenstein & Powell, 1989; Lubienski, 2000, 2002). 
The lack of researcher judgment in our study may have encouraged more 
participation. Second, the researchers strove to give students meaningful 
tasks that were not placed in a pseudo-real world context, tasks that other 
researchers have suggested might cause confusion with this population of 
students (Lubienski, 2000). Further, the researchers would negotiate the 
meaning of a task before students began investigating it, something that 
Boaler (2002) argues can reduce linguistic, class, and ethnic inequalities in 
inquiry-based instruction. Third, although some participatory norms were 
strongly encouraged by our research team (e.g., working collaboratively and 
justifying one‘s solutions), students had an active role in negotiating many 
aspects of their participatory roles (for example, see episodes 4 and 5). As 
Hand (2003) notes, ―open‖ participation practices – that is, allowing students 
to negotiate their own roles in their mathematical environments – lead 
students to become more invested in their mathematical activity than if an 
authority tells them how to behave. Fourth, we permitted and encouraged 
students to use their own language and modes of reasoning to justify their 
solutions and discuss their mathematical work. Barriers to student 
participation in mathematical activity include discontinuities between their 
language and reasoning in out-of-school activity and their mathematics 
classrooms (Cobb & Hodge, 2002; Hand, 2003). Allowing students to use 
their own language and reasoning not only increased their mathematical 
autonomy, but perhaps also limited such discontinuities.  

Our fifth and final aspect is more tentative. In our environment, the 
researchers displayed a genuine interest in students‘ mathematical 
reasoning, often letting students‘ reasoning set the stage for subsequent 
investigations. We found that students were initially surprised that 
authority figures valued their mathematical ideas; it is possible that these 
students were accustomed to teachers not valuing their mathematical 
reasoning, but only caring if their answer was correct. In our informal 
observations, we found that once students realised that we cared deeply 
about how they thought, they were eager to share their thinking with us. 
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Appendix. 

Tasks Posed by Researchers 

Date Tasks  

11/12/03 1. If I gave the yellow rod the number name five, what number name 
would I give to the orange rod? 

2. Suppose I gave the orange rod the number name four what number 
name would I give to the yellow rod? 

3. If I call the orange rod one, what number name would I give to the 
yellow rod? 

4. If I call the white rod two, what number name would I give to all of 
the other rods? 

11/13/03 1. Suppose I called the dark green one what number name would I 
give to the light green? 

2.  Someone told me that the red rod is half as long as the yellow rod, 
what do you think?   

3. If I call the blue rod one, I want each of you to find me a rod that 
would have a number name one-half. 

11/19/03 1. Convince us that there is not a rod that is half the length of the blue 
rod. 

2. Is 0.3 another name for the light green rod? 
3. If I call the blue rod one, what number name would I give to the 

white rod (red rod)? 
11/20/03 1. If I call the rod blue rod one, what number name would I give to 

the red rod (light green rod)?   
2. Is three-ninths another name for the light green rod? 
3. If I call the blue rod one, what number name would I give to the 

yellow rod? 
4. If I call the blue rod one, what number names would I give to the 

rest of the rods? 
12/3/03 1. If I call the orange rod one, what number name would I give to the 

white rod (red rod)?   
2. Can the red rod be named two-tenths and one-fifth? 
3. If I call the orange rod ten (fifty) what number name will I give to 

the white rod? 
4. I want to know which is bigger, one-half or one-third and by how 

much. 
12/4/03 1. Build a train that would be named one if the yellow rod were 

named one-half. 
2. How many distinct trains of two purple and two white rods are 

there? 
12/10/03 1. If we call “rorange” one, what would be call the red rod? 

2. If a train of two red rods and two orange rods is called one, what 
number name would you give to the red rod? 

3. If a train of two red rods and two orange rods is called two, what 
number name would you give the dark green rod? 

4. If a train of two red rods and two orange rods is called two, what 
number name would you give the white rod? 
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5. If three “roranges” were named one, what number name would you 
give the red rod?  Four “roranges”? 

6. If we call “rorange” one, what would be call the yellow rod? 

7. If we call 100 “roranges” one, what number name would you give 
the red rod? 

8. What is the number name for the white rod when ten “roranges” 
are named one? 

12/11/03 1. Suppose I had two “roranges” (a train of red and orange), what 
number name would I give to the red rod? 

2. If ten “roranges” are equal to one, what is the number name for the 
red rod? 

3. If ten “roranges” has the number name one, what would the 
number name of the white rod be, 120 or 1/120? 

4. If six “roranges” had the number name one, what would you call 
the red rod? 

5. Suppose you had a friend and he was given a train with a bunch of 
red and orange rods.  The train was called one, how could he find a 
name for red? 

6. I have a long train of “yoranges” (yellow and orange) called one, 
what would the yellow rod be called?  What if I had five 
“yoranges”? Six “yoranges”? 

7. If a train of twenty orange rods and five red rods is named one, 
what is the number name of the red rod? 

8. Suppose you had a large number of “roranges”, how could you 
name a red rod? 

 

 

Challenge Tasks Posed by Students 

 
Date Challenges 

11/12/03 no student challenges were posed 
11/13/03 no student challenges were posed 
11/19/03 
 

1. If the light green rod is called 0.3, what is the number name for the 
white rod? 

2. What is the number name for the red rod when the blue rod is 
called one? 

11/20/03 1. If the blue rod is named one, what is the orange rod named? 
2. What is the name of the white rod if the black rod is named one? 
3. How many rods are equivalent to two green rods? 
4. Why are ten white rods equivalent to an orange rod but only nine 

white rods are equivalent to a blue rod? 
5. If the orange rod has the number name one, what is the number 

name for the yellow rod? 
12/3/03 1.  If the orange rod is named one-twenty, what is the blue rod called? 
12/4/03 1.   How many trains can you form that has the same length as the 

orange rod? 
12/10/03 1. If a train of two orange rods and two red rods is named two, what 

number name would you give to the purple rod? 
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2. If a train of two orange rods and two red rods is named two, what 
number name would you give to the yellow rod? a light green rod? 
a brown rod? 

3. If ten “roranges” are named one, what number name would you 
give to the red rod and why? 

4. If nine orange rods and four red rods are named one, what is the 
name of a red rod?  a black rod?  a white rod? 

12/11/03 1. If  “rorange” (a train of an orange and a red rod) is named one, 
what is the number name for the yellow rod? 

2. If “blorange” (a train of an orange and a blue rod) is named one, 
what is the number name for the light green rod? 

3. If we call ten “roranges” one, what number name would be call the 
white rod? 

4. If ten “yoranges” (a train of an orange rod and a yellow rod) are 
named one, what will the yellow and light green rods be called? 

5. How many white rods are equal to ten “yoranges”? 
6. If “rorange” is named one, what is the number name for the yellow 

rod? 
7. If “rorange” is named one, what is the number name for the black 

rod? 
8. How many light green rods are equivalent to ten “yorange” rods? 
9. How many white rods are equivalent to ten “yorange” rods? 
10. How many yellow rods are equivalent to ten “yorange” rods? 

 

 


